M1.(a) both water vapour and ethanol will condense allow steam for water vapour allow they both become liquids allow ethane condenses at a lower temperature allow some of the steam hasn't reacted allow it is a reversible reaction / equilibrium
(b) amount will decrease
because the equilibrium will move to the left
(c) more ethanol will be produced
because system moves to least / fewer molecules

M2.(a) because sulfur dioxide causes acid rain
which kills fish / aquatic life or dissolves / damages statues / stonework or kills / stunts growth of trees
if no other mark awarded then award 1 mark for sulfur dioxide is toxic or causes breathing difficulties.
(b) (i) electrons are lost
(ii) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$
allow $\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}-2 e^{-}$
ignore state symbols
(iii) copper sulfate
allow any ionic copper compound
(c) (lattice of) positive ions
delocalised electrons
accept sea of electrons
(electrostatic) attraction between the positive ions and the electrons
electrons can move through the metal / structure or can flow
allow electrons can carry charge through the metal / structure if wrong bonding named or described or attraction between oppositely charged ions then do not award M1 or M3 - MAX 2
(d) (copper compounds are absorbed / taken up by) plants
allow crops
which are burned
the ash contains the copper compounds
do not award M3 if the ash contains copper (metal)
(e)

| $/ \mathrm{A}_{\mathrm{r}}$ | $55.6 / 63.5$ | $16.4 / 56$ | $28.0 / 32$ |  |
| :--- | :--- | :--- | :--- | :---: |
| moles | 0.876 | 0.293 | 0.875 |  |
| ratio | 3 | 1 | 3 |  |
| formula | $\mathrm{Cu}_{3} \mathrm{FeS}_{3}$ |  |  |  |

award 4 marks for $\mathrm{Cu}_{3} \mathrm{FeS}_{3}$ with some correct working award 3 marks for $\mathrm{Cu}_{3} \mathrm{FeS}_{3}$ with no working if the answer is not $\mathrm{Cu}_{3} \mathrm{FeS}_{3}$ award up to $\mathbf{3}$ marks for correct steps from the table apply ecf if the student has inverted the fractions award 3 marks for an answer of $\mathrm{CuFe}_{3} \mathrm{~S}$

M3.(a) (i) the products are at a lower energy level than the reactants accept products have less energy / less energy at the end than the beginning
(ii) because a catalyst provides an alternative / different pathway / mechanism / reaction route
accept adsorption or 'increases concentration at the surface' ignore absorption
(that has) lower activation energy
allow weakens bonds
allow idea of increased successful collisions.
DO NOT ALLOW answers stating catalysts provide energy for M1 and M2
(b) one pair of electrons in each overlap (8 pairs in total)
allow any combination of dots, crosses or other symbols
the rest of the diagram correct with four non-bonding electrons on the oxygen giving a total of eight electrons in oxygen outer energy level.

(c) (i) $\pm 3024$ (J)
correct answer with or without working gains $\mathbf{3}$ marks if the answer is incorrect, award up to $\mathbf{2}$ marks for the following steps:

- $\Delta T=14.4\left({ }^{\circ} \mathrm{C}\right)$
- $50 \times 4.2 \times 14.4$
allow ecf for incorrect $\Delta T$
(ii) 0.015(2173913)


## correct answer with or without working gains $\mathbf{3}$ marks

if answer is incorrect, allow 1 mark each for any of the following steps up to a max of 2.

- 0.70 g
- $M_{1}$ of ethanol $=46$
- $0.70 / 46$
allow ecf in final answer for arithmetical errors
(iii) $\pm 198$ 720(J / mole)
$c(i) \div c(i i)$
allow ecf from (c)(i) and (c)(ii)
0.015 gives 201600
0.0152 gives 198947
0.01522 gives 198686
(d) (as the molecules get bigger or the number of carbon atoms increases) the intermolecular forces
allow intermolecular bonds
(intermolecular forces) increase
allow more / stronger (intermolecular forces)
and therefore require more (heat) energy to overcome
breaking covalent bonds or unspecified bonds max 1 mark (M3)

M4.(a) (i) silver nitrate allow $\mathrm{AgNO}_{3}$
(ii) potassium carbonate or allow $\mathrm{K}_{2} \mathrm{CO}_{3}$ sodium carbonate allow $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(b) base

> allow ionic
> ignore insoluble or soluble ignore alkali
(c) (i) evaporate
or
crystallise
allow heat or boil or leave (to evaporate)
allow cool
ignore filtration unless given as an alternative
do not accept freeze or solidify
(ii) $2\left(\mathrm{HNO}_{3}\right)$
accept multiples
(iii) 9
accept nine
(d) $6.21 / 207 \quad 0.72 / 16$

1 mark for dividing mass by $A_{\text {, }}$
$=0.03=0.045$
1 mark for correct proportions (allow multiples)

1 mark for correct whole number ratio (allow multiples). Can be awarded from formula.
$\mathrm{Pb}_{2} \mathrm{O}_{3}$
allow $\mathrm{O}_{3} \mathrm{~Pb}_{2}$
ecf allowed throughout if sensible attempt at step 1 correct formula with no working gains 1 mark

M5.(a) lattice / giant structure
max 3 if incorrect structure or bonding or particles
ionic or (contains) ions
$\mathrm{Na}^{+}$and Cl
accept in words or dot and cross diagram: must include type and magnitude of charge for each ion
electrostatic attraction
allow attraction between opposite charges
(b) hydrogen
allow $\mathrm{H}_{2}$
sodium hydroxide
allow NaOH
(c) any one from, eg:

- people should have the right to choose
- insufficient evidence of effect on individuals
- individuals may need different amounts.
allow too much could be harmful
ignore religious reasons
ignore cost
ignore reference to allergies
(d) (i) one bonding pair of electrons


$$
6 \text { unbonded electrons on each atom }
$$

(ii) simple molecules
max $\mathbf{2}$ if incorrect structure or bonding or particles
accept small molecules
accept simple / small molecular structure
with intermolecular forces
accept forces between molecules
must be no contradictory particles
which are weak or which require little energy to overcome - must be linked to second marking point
reference to weak covalent bonds negates second and third marking points
(iii) iodine has no delocalised / free / mobile electrons or ions
so cannot carry charge
if no mark awarded iodine molecules have no charge gains 1 mark

